Introduction – Company Background

GuangXin Industrial Co., Ltd. is a specialized manufacturer dedicated to the development and production of high-quality insoles.

With a strong foundation in material science and footwear ergonomics, we serve as a trusted partner for global brands seeking reliable insole solutions that combine comfort, functionality, and design.

With years of experience in insole production and OEM/ODM services, GuangXin has successfully supported a wide range of clients across various industries—including sportswear, health & wellness, orthopedic care, and daily footwear.

From initial prototyping to mass production, we provide comprehensive support tailored to each client’s market and application needs.

At GuangXin, we are committed to quality, innovation, and sustainable development. Every insole we produce reflects our dedication to precision craftsmanship, forward-thinking design, and ESG-driven practices.

By integrating eco-friendly materials, clean production processes, and responsible sourcing, we help our partners meet both market demand and environmental goals.

Core Strengths in Insole Manufacturing

At GuangXin Industrial, our core strength lies in our deep expertise and versatility in insole and pillow manufacturing. We specialize in working with a wide range of materials, including PU (polyurethane), natural latex, and advanced graphene composites, to develop insoles and pillows that meet diverse performance, comfort, and health-support needs.

Whether it's cushioning, support, breathability, or antibacterial function, we tailor material selection to the exact requirements of each project-whether for foot wellness or ergonomic sleep products.

We provide end-to-end manufacturing capabilities under one roof—covering every stage from material sourcing and foaming, to precision molding, lamination, cutting, sewing, and strict quality control. This full-process control not only ensures product consistency and durability, but also allows for faster lead times and better customization flexibility.

With our flexible production capacity, we accommodate both small batch custom orders and high-volume mass production with equal efficiency. Whether you're a startup launching your first insole or pillow line, or a global brand scaling up to meet market demand, GuangXin is equipped to deliver reliable OEM/ODM solutions that grow with your business.

Customization & OEM/ODM Flexibility

GuangXin offers exceptional flexibility in customization and OEM/ODM services, empowering our partners to create insole products that truly align with their brand identity and target market. We develop insoles tailored to specific foot shapes, end-user needs, and regional market preferences, ensuring optimal fit and functionality.

Our team supports comprehensive branding solutions, including logo printing, custom packaging, and product integration support for marketing campaigns. Whether you're launching a new product line or upgrading an existing one, we help your vision come to life with attention to detail and consistent brand presentation.

With fast prototyping services and efficient lead times, GuangXin helps reduce your time-to-market and respond quickly to evolving trends or seasonal demands. From concept to final production, we offer agile support that keeps you ahead of the competition.

Quality Assurance & Certifications

Quality is at the heart of everything we do. GuangXin implements a rigorous quality control system at every stage of production—ensuring that each insole meets the highest standards of consistency, comfort, and durability.

We provide a variety of in-house and third-party testing options, including antibacterial performance, odor control, durability testing, and eco-safety verification, to meet the specific needs of our clients and markets.

Our products are fully compliant with international safety and environmental standards, such as REACH, RoHS, and other applicable export regulations. This ensures seamless entry into global markets while supporting your ESG and product safety commitments.

ESG-Oriented Sustainable Production

At GuangXin Industrial, we are committed to integrating ESG (Environmental, Social, and Governance) values into every step of our manufacturing process. We actively pursue eco-conscious practices by utilizing eco-friendly materials and adopting low-carbon production methods to reduce environmental impact.

To support circular economy goals, we offer recycled and upcycled material options, including innovative applications such as recycled glass and repurposed LCD panel glass. These materials are processed using advanced techniques to retain performance while reducing waste—contributing to a more sustainable supply chain.

We also work closely with our partners to support their ESG compliance and sustainability reporting needs, providing documentation, traceability, and material data upon request. Whether you're aiming to meet corporate sustainability targets or align with global green regulations, GuangXin is your trusted manufacturing ally in building a better, greener future.

Let’s Build Your Next Insole Success Together

Looking for a reliable insole manufacturing partner that understands customization, quality, and flexibility? GuangXin Industrial Co., Ltd. specializes in high-performance insole production, offering tailored solutions for brands across the globe. Whether you're launching a new insole collection or expanding your existing product line, we provide OEM/ODM services built around your unique design and performance goals.

From small-batch custom orders to full-scale mass production, our flexible insole manufacturing capabilities adapt to your business needs. With expertise in PU, latex, and graphene insole materials, we turn ideas into functional, comfortable, and market-ready insoles that deliver value.

Contact us today to discuss your next insole project. Let GuangXin help you create custom insoles that stand out, perform better, and reflect your brand’s commitment to comfort, quality, and sustainability.

🔗 Learn more or get in touch:
🌐 Website: https://www.deryou-tw.com/
📧 Email: shela.a9119@msa.hinet.net
📘 Facebook: facebook.com/deryou.tw
📷 Instagram: instagram.com/deryou.tw

 

Customized sports insole ODM Vietnam

Are you looking for a trusted and experienced manufacturing partner that can bring your comfort-focused product ideas to life? GuangXin Industrial Co., Ltd. is your ideal OEM/ODM supplier, specializing in insole production, pillow manufacturing, and advanced graphene product design.

With decades of experience in insole OEM/ODM, we provide full-service manufacturing—from PU and latex to cutting-edge graphene-infused insoles—customized to meet your performance, support, and breathability requirements. Our production process is vertically integrated, covering everything from material sourcing and foaming to molding, cutting, and strict quality control.Breathable insole ODM development Indonesia

Beyond insoles, GuangXin also offers pillow OEM/ODM services with a focus on ergonomic comfort and functional innovation. Whether you need memory foam, latex, or smart material integration for neck and sleep support, we deliver tailor-made solutions that reflect your brand’s values.

We are especially proud to lead the way in ESG-driven insole development. Through the use of recycled materials—such as repurposed LCD glass—and low-carbon production processes, we help our partners meet sustainability goals without compromising product quality. Our ESG insole solutions are designed not only for comfort but also for compliance with global environmental standards.Private label insole and pillow OEM China

At GuangXin, we don’t just manufacture products—we create long-term value for your brand. Whether you're developing your first product line or scaling up globally, our flexible production capabilities and collaborative approach will help you go further, faster.Graphene sheet OEM supplier China

📩 Contact us today to learn how our insole OEM, pillow ODM, and graphene product design services can elevate your product offering—while aligning with the sustainability expectations of modern consumers.Taiwan custom neck pillow ODM

HiDEF-seq, a new DNA sequencing technique developed by NYU Langone Health, offers unprecedented accuracy in detecting early-stage molecular changes in DNA, paving the way for better understanding and monitoring of mutations and DNA damage. HiDEF-seq, a groundbreaking technique from NYU Langone Health, identifies early DNA changes that precede mutations, enhancing understanding of genetic disorders and aging. Mutations are alterations in the molecular “letters” that compose the DNA code, which serves as the blueprint for all living cells. While some of these changes have minimal impact, others can result in diseases, such as cancer. A recent study has introduced a novel technique, called HiDEF-seq, which can precisely detect the early molecular changes in the DNA code that occur before mutations. The study authors say their technique — HiDEF-seq, short for Hairpin Duplex Enhanced Fidelity Sequencing — could advance our understanding of the basic causes of mutations, in both healthy cells and in cancer, and how genetic changes naturally accumulate in human cells as people age. Led by a team of researchers at NYU Langone Health, with collaborators across North America and Denmark, the work helps to resolve the earliest steps in how mutations occur in DNA. Understanding DNA Structure and Mutation Formation The new study is based on the understanding that DNA is made up of two strands of molecular letters, or bases. Each strand is composed of four types of letters: adenine (A), thymine (T), guanine (G), and cytosine (C). The bases of each strand pair with bases in the other strand in a specific pattern, with As pairing with Ts and Gs pairing with Cs. This allows the DNA code to be replicated and passed down accurately from one generation of cells to the next. Importantly, mutations are changes in the DNA code that are present in both strands of DNA. For example, a base pair of G and C, with a G on one strand paired with a C on the other strand, can mutate to an A and T base pair. However, researchers say, most mutations have their origins in DNA changes that are present in only one of the two DNA strands, and these single-strand changes, such as a mismatched G and T base pair, cannot be accurately identified using previous testing techniques. These changes can occur when a DNA strand is not copied correctly during replication, as a cell divides into two cells, or when one of the two DNA strands is damaged by heat or by other chemicals in the body. If these single-strand DNA changes are not repaired by the cell, then the changes are at risk of becoming permanent double-strand mutations. HiDEF-seq’s Detection Capabilities Publishing in the journal Nature, the HiDEF-seq technique was shown to detect double-strand mutations with extremely high accuracy, with an estimate of one recording error per 100 trillion base pairs analyzed. Moreover, HiDEF-seq detected changes in the DNA letter code while they were present on just one of the two strands of DNA, before they become permanent double-strand mutations. “Our new HiDEF-seq sequencing technique allows us to see the earliest fingerprints of molecular changes in DNA when the changes are only in single strands of DNA,” said senior study author Gilad Evrony, MD, PhD, a core member of the Center for Human Genetics & Genomics at NYU Grossman School of Medicine. Research Focus and Experiments Using HiDEF-seq Because people with genetic syndromes linked to cancer are known to have higher rates of mutations in their cells than cells in people with no cancer predisposition, researchers began their experiments by describing the DNA changes in healthy cells from people with these syndromes. Specifically, investigators worked with healthy cells from people with polymerase proofreading-associated polyposis (PPAP), a hereditary condition linked to an increased risk for colorectal cancer, and congenital mismatch repair deficiency (CMMRD), another hereditary condition that increases the likelihood of several cancers in children. Using HiDEF-seq, researchers found a higher number of single-strand DNA changes in their cells, such as a T paired with a C in place of the original G paired with a C, than in the cells from people who did not have either syndrome. Moreover, the pattern of these single-strand changes was similar to the pattern observed in the double-strand DNA mutations for people with either syndrome. Subsequent experiments were performed in human sperm, which are known to have among the lowest double-strand mutation rates of any human cell type. Researchers found that the pattern of chemical damage, called cytosine deamination, observed by HiDEF-seq in single stands of DNA in sperm, closely matched the damage observed in blood DNA intentionally damaged by heat. This, the researchers say, suggests that the two patterns of chemical damage to DNA, one natural and the other induced, occur through a similar process. “Our study lays the foundation for using the HiDEF-seq technique in future experiments to transform our understanding of how DNA damage and mutations arise,” said Evrony, who is also an assistant professor in the Department of Pediatrics and the Department of Neuroscience and Physiology at NYU Grossman School of Medicine. Single-strand changes in DNA occur continually as cells divide and multiply, and while layers of repair mechanisms fix most changes, some get through and become mutations. “Our long-term goal is to use HiDEF-seq to create a comprehensive catalog of single-strand DNA mismatch and damage patterns that will help explain the known double-strand mutation patterns,” said Evrony. “In the future, we hope to combine profiling of single-strand DNA lesions, as obtained from HiDEF-seq, with the lesions’ resulting double-strand mutations to better understand and monitor the everyday effects on DNA from environmental exposures.” Geneticists estimate that there are approximately 12 billion bases or individual DNA letters that can be damaged or mismatched in each human cell, as there are two copies of the genetic code, with one copy inherited from each parent. Each of these copies comprises double-stranded DNA spanning 3 billion base pairs. Evrony says that every base position in the genetic code is likely damaged or mutated at some point during an individual’s lifetime in at least some cells. Reference: “DNA mismatch and damage patterns revealed by single-molecule sequencing” by Mei Hong Liu, Benjamin M. Costa, Emilia C. Bianchini, Una Choi, Rachel C. Bandler, Emilie Lassen, Marta Grońska-Pęski, Adam Schwing, Zachary R. Murphy, Daniel Rosenkjær, Shany Picciotto, Vanessa Bianchi, Lucie Stengs, Melissa Edwards, Nuno Miguel Nunes, Caitlin A. Loh, Tina K. Truong, Randall E. Brand, Tomi Pastinen, J. Richard Wagner, Anne-Bine Skytte, Uri Tabori, Jonathan E. Shoag and Gilad D. Evrony, 12 June 2024, Nature. DOI: 10.1038/s41586-024-07532-8 Funding for the study was provided by National Institutes of Health grants UG3NS132024, R21HD105910, DP5OD028158, T32AG052909, F32AG076287, and P30CA016087. Additional funding support was provided by the Sontag Foundation, the Pew Foundation, and the Jacob Goldfield Foundation. Evrony and NYU have a patent application pending on the HiDEF-seq method. Evrony owns equity in DNA-sequencing companies Illumina, Pacific Biosciences, and Oxford Nanopore Technologies, some of whose products were adapted for use in this study. All of these arrangements are being managed in accordance with the policies and practices of NYU Langone Health. Besides Evrony, other NYU Langone researchers involved in this study are co-lead authors Mei-Hong Liu and Benjamin Costa, and co-authors Emilia Bianchini, Una Choi, Rachel Bandler, Marta Gronska-Peski, Adam Schwing, Zachary Murphy, Caitlin Loh, and Tina Truong. Other study co-investigators include Emilie Lassen, Daniel Rosenkjaer, Anne-Bine Skytte, at the Cryos International Sperm and Egg Bank in Copenhagen, Denmark; Shany Picciotto and Jonathan Shoag, at Case Western Reserve University in Cleveland, Ohio; Vanessa Bianchi, Lucie Stengs, Melissa Edwards, Nuno Miguel Nunes, and Uri Tabori, at The Hospital for Sick Children in Toronto, Canada; Randall Brand, at the University of Pittsburgh in Pennsylvania; Tomi Pastinen, at Children’s Mercy Kansas City in Missouri; and Richard Wagner, at the Universite de Sherbrooke in Canada.

A female individual of Alsodes vittatus. Credit: Edvin Riveros The elusive frog Alsodes vittatus has been found after 130 years, emphasizing gaps in knowledge and conservation needs in South American amphibians. A team of researchers has rediscovered a frog species that had not been seen in over 130 years. First described in 1902, Alsodes vittatus had remained undetected despite numerous search efforts. The researchers found two separate populations of the species in the southeastern area of the historic Hacienda San Ignacio de Pemehue, located in Chile’s La Araucanía Region. This rediscovery marks a significant milestone for South American herpetology and highlights the importance of conserving biodiversity in the Southern Cone. A male individual of Alsodes vittatus. Credit: Edvin Riveros The frog Alsodes vittatus is an elusive creature, described in 1902, it remained undetected for more than a century. Now, after a decade of investigation, a research team has rediscovered it in its first confirmed sighting in 130 years. Researchers from the Laboratory of Systematics and Conservation of Herpetozoa (SyCoH) at the University of Concepción, Chile—Dr. Claudio Correa, renewable natural resources engineer Edvin Riveros Riffo, and biologist Juan Pablo Donoso—have published their extraordinary discovery in the journal ZooKeys. The habitat of Alsodes vittatus. Credit: Edvin Riveros A Historical Mystery Revisited Alsodes vittatus was scientifically described in 1902 by Rodulfo Amando Philippi, a German naturalist living in Chile. French entomologist Philibert Germain had discovered the species in 1893 at the former Hacienda San Ignacio de Pemehue in La Araucanía Region, Chile, and brought three specimens to Philippi for description. Since then, no one has seen the species again, despite multiple search efforts. A male individual of Alsodes vittatus. Credit: Edvin Riveros Between 1995 and 2002, several researchers unsuccessfully tried to find it in the Pemehue area, at the northwestern end of the former estate. In 2015 and 2016, new expeditions led by Claudio Correa and Juan Pablo Donoso managed to locate two populations of Alsodes in the same area, but the individuals they saw lacked A. vittatus’ distinctive white or yellow stripe on the back, suggesting they likely belonged to a different species. “The main challenge in locating it was the lack of precision in the description of its type locality,” say the researchers. “In Germain’s time, the Hacienda San Ignacio de Pemehue was an estate of enormous size, and the naturalist did not specify the exact place where he collected the specimens.” The habitat of Alsodes vittatus. Credit: Edvin Riveros Reconstructing the Past to Locate the Present To locate the species, Correa and his team had to reconstruct the route that Germain could have followed within the estate by studying his publications and other historical documents. In 2023 and 2024, Claudio Correa and Edvin Riveros followed the reconstructed route, entering the former estate from the southeastern end. There, they found two populations of A. vittatus in the Lolco and Portales river basins in La Araucanía region, confirming the existence of this enigmatic species after more than a century without records. This is an important milestone for South American herpetology and the conservation of biodiversity in the southern cone. Most of the other species in the genus Alsodes are either threatened with extinction or we don’t know enough about them to assess their status, and shedding light on where and how they live is the first step in protecting them. A female individual of Alsodes vittatus. Credit: Edvin Riveros “The rediscovery of A. vittatus allowed us to obtain, more than a century after its description, the first biological and ecological data on the species. Field observations also indicate that this amphibian faces several significant threats and that it could be considered endangered,” the researchers warn. “In a broader context, this rediscovery demonstrates the limited biological, evolutionary, and biogeographic knowledge of the amphibians that inhabit the southern cone of South America, emphasizing the urgency of their study and conservation.” Reference: “Lost for more than a century: the rediscovery of Alsodes vittatus (Philippi, 1902) (Anura, Alsodidae), one of the rarest and most elusive amphibians from Chile” by Claudio Correa, Edvin Riveros-Riffo and Juan P. Donoso, 6 March 2025, ZooKeys. DOI: 10.3897/zookeys.1230.135523

Researchers have found that maternal obesity causes long-term changes in the brain via the microRNA miR-505-5p, leading offspring to prefer high-fat diets and increasing their risk of obesity. This effect can be mitigated by maternal exercise during pregnancy, according to a new study in PLOS Biology. A study reveals that maternal obesity in mice increases microRNA levels in the hypothalamus in offspring, leading to overeating. Maternal obesity impacts the eating behaviors of offspring via long-term overexpression of the microRNA miR-505-5p. This is according to a study published today (June 4th) in the open-access journal PLOS Biology by Laura Dearden and Susan Ozanne from the MRC Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge, UK, and colleagues. Link Between Maternal Obesity and Offspring Health Risks Previous studies in both humans and animal models have shown that the offspring of obese mothers have a higher risk of obesity and type 2 diabetes. While this relationship is likely the result of a complex relationship between genetics and environment, emerging evidence has implicated that maternal obesity can disrupt the hypothalamus—the region of the brain responsible for nutrition sensing and energy homeostasis. In animal models, offspring exposed to overnutrition during key periods of development eat more, but little is known about the molecular mechanisms that lead to these changes in eating behavior. Study Findings on MicroRNA and Eating Behaviors In this study, researchers found that mice born from obese mothers had higher levels of the microRNA miR-505-5p in their hypothalamus—from as early as the fetal stage into adulthood. The researchers found that the mice ate more and showed a preference for high-fat foods. Interestingly, the effect of maternal obesity on miR-505-5p and eating behaviors was mitigated if the mothers exercised during pregnancy. Molecular Mechanisms and Preventative Measures Cell culture experiments showed that miR-505-5p expression could be induced by exposing hypothalamic neurons to long-chain fatty acids and insulin, which are both high in pregnancies complicated by obesity. The researchers identified miR-505-5p as a novel regulator of pathways involved in fatty acid uptake and metabolism, therefore high levels of the miRNA make the offspring brain unable to sense when eating high-fat foods. Several of the genes that miR-505-5p regulates have been associated with high body mass index in human genetic studies. The study is one of the first to demonstrate the molecular mechanism linking nutritional exposure in utero to eating behavior. Conclusion and Implications The authors add, “Our results show that obesity during pregnancy causes changes to the baby’s brain that makes them eat more high-fat food in adulthood and more likely to develop obesity. “Importantly we showed that moderate exercise, without weight loss, during pregnancies complicated by obesity prevented the changes to the baby’s brain. This helps us understand why the children of mothers living with obesity are more likely to become obese themselves, with early life exposures, genetics, and current environment all being contributing factors.” Reference: “Maternal obesity increases hypothalamic miR-505-5p expression in mouse offspring leading to altered fatty acid sensing and increased intake of high-fat food” by Laura Dearden, Isadora C. Furigo, Lucas C. Pantaleão, L W. P. Wong, Denise S. Fernandez-Twinn, Juliana de Almeida-Faria, Katherine A. Kentistou, Maria V. Carreira, Guillaume Bidault, Antonio Vidal-Puig, Ken K. Ong, John R. B. Perry, Jose Donato Jr and Susan E. Ozanne, 4 June 2024, PLOS Biology. DOI: 10.1371/journal.pbio.3002641

DVDV1551RTWW78V

 


Latex pillow OEM production in Taiwan 》meeting your quality standards, exceeding your expectationsIndonesia OEM insole and pillow supplier 》elevating your brand with precision engineering and flexible productionTaiwan anti-bacterial pillow ODM design 》functional, flexible, and built for scale

文章標籤
全站熱搜
創作者介紹
創作者 me76erv9 的頭像
me76erv9

兒童足弓鞋墊種類門市

me76erv9 發表在 痞客邦 留言(0) 人氣(0)